

Seminario "Normatividad Ambiental: Elemento Clave para la productividad de las empresas"

Emisiones de GEI por el sector de Tratamiento de Aguas Residuales en México

M.G Paredes, L.P. Güereca, A. Noyola Instituto de Ingeniería - UNAM

Octubre, 2018. Monterrey, Nuevo León

CONTENIDO

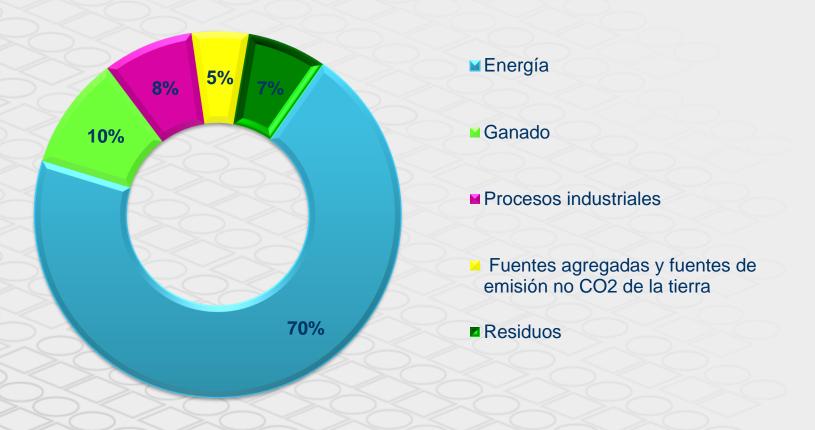
Emisiones de GEI en México

Estado actual del TAR en México

Emisiones de CH₄ por el sector del TAR

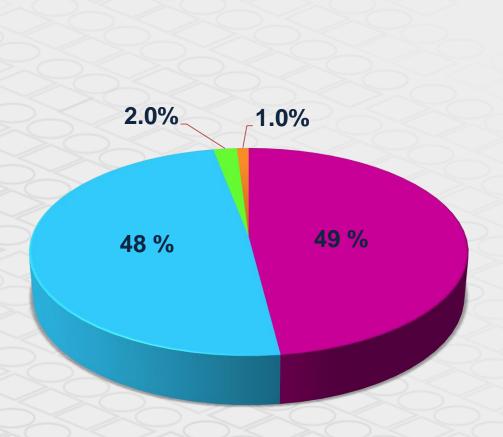
Factores de emisión de CH₄ para sistemas de TAR

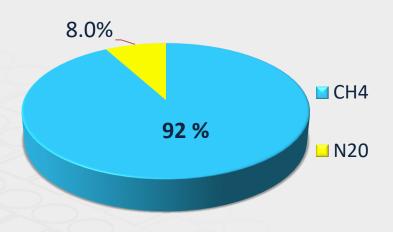
Oportunidades de mejora


Comentarios finales

Emisiones de GEI en México

Emisiones Totales (2015): 683 Mt de CO₂ eq





Emisiones de GEI por la categoría de residuos en México

Emisiones totales (2015): 46 Mt de CO2 eq (7 % del total)

Emisiones de GEI por el TAR

- Tratamiento de residuos sólidos
- Tratamiento de aguas residuales
- Incineración y quema a cierlo abierto de residuos
- Tratamiento biológico de residuos sólidos

Metano (CH₄)

- Segundo GEI más abundante después del CO₂
- Contaminante climático de vida corta (CCVC)

- TAR puede producir CH₄, dependiendo de la tecnología seleccionada y su operación.
- Tiene un GWP 34 veces mayor que el CO₂ (100 años)

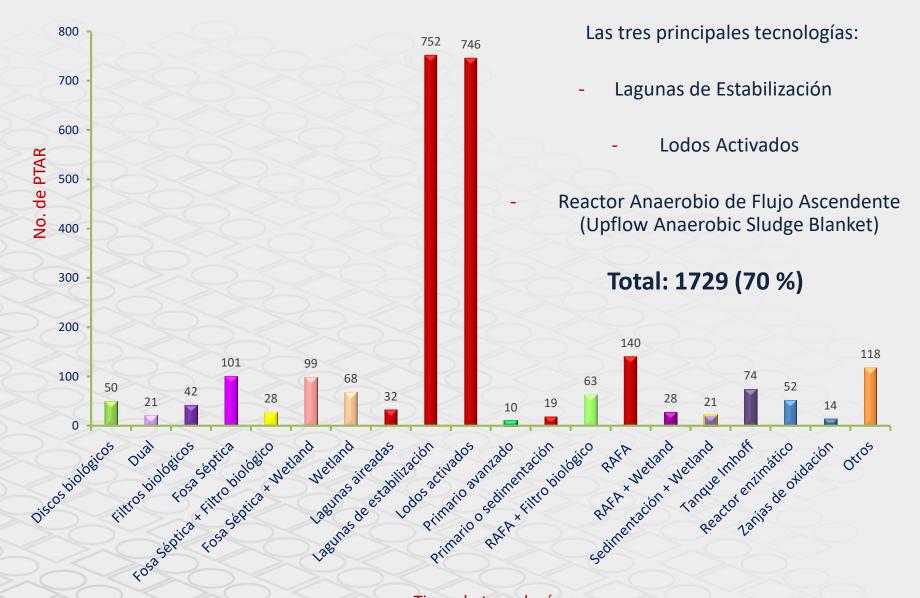
Se estima que el metano producido por el sector del TAR constituye entre el **8 - 11% del total de emisiones de metano mundiales**

Estado actual del TAR en México

43%

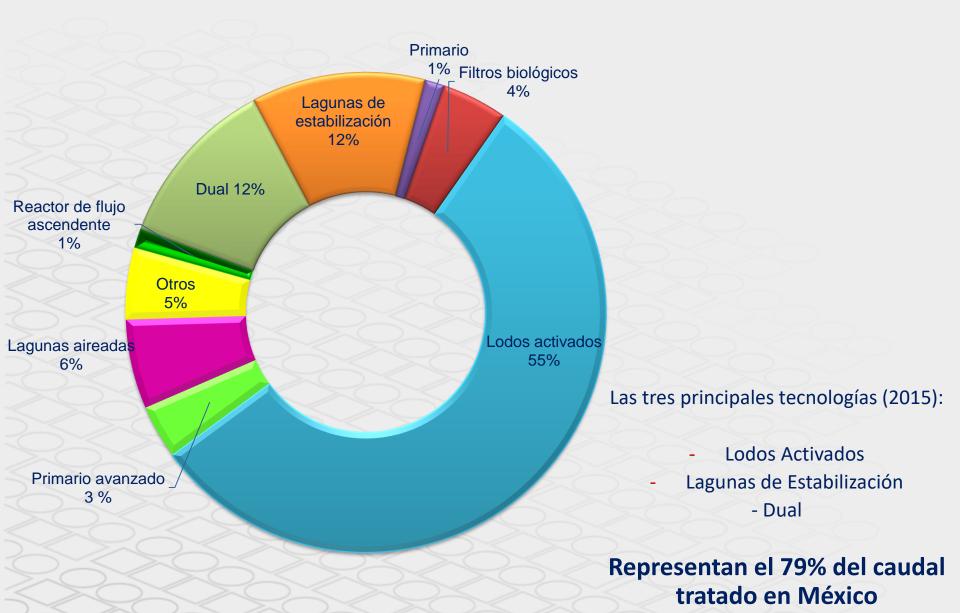
Estado actual del TAR en México

PTAR municipales (2015): 2 477



■ Agua residual tratada ■ Agua residual no tratada

57%


Tecnologías para el TAR en México

Tipos de tecnologías

Caudal tratado por tecnología

^{*} Dual: Sistema de tratamiento combinado o doble etapa (filtro percolador + lodos activados)

CONAGUA, 2016

Proyectos de investigación realizados

Inventario de GEI & Escenarios de mitigación para el año 2030

Estimación de factores de emisión de CH₄ de los principales sistemas de TAR en México

Factores de corrección del metano para la estimación de emisiones en sistemas aerobios

Inventario & Escenarios de mitigación para 2030

Se estimó el Escenario Base de emisiones de metano (CH₄) y dióxido de carbono (CO₂) considerando datos tendenciales de crecimiento tanto poblacional como de infraestructura.

Se propusieron cinco Escenarios de Mejora encaminados a la reducción de emisiones de GEI generados por los procesos TAR municipales a partir del Escenario Base.

Inventario & Escenarios de mitigación para 2030

Escenarios de mejora propuestos

Nueva infraestructura de PTAR sean **procesos aerobios**:

- Lodos Activados
- Lagunas aireadas
- Filtros Percoladores
- Discos Biológicos

Nueva infraestructura de PTAR se empleen **procesos combinados**:

RAFA +

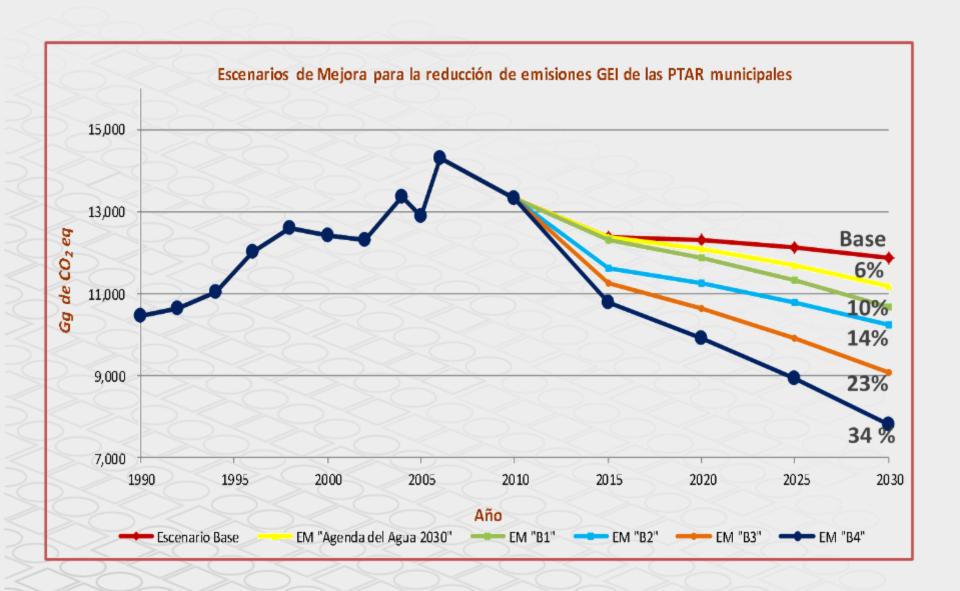
- Lodos Activados
- Lagunas aireadas
- Filtros Percoladores
 - Discos Biológico

*Quema en flama del 84 % de metano generado

Procesos combinados

- El 100 % del **metano disuelto** generado es colectado para su quema.

* 95 % de eficiencia de quemado


Procesos combinados

- El 50% del metano disuelto generado es colectado
- El biogás es usado para generar energía eléctrica y suplir parte de la demanda energética de las PTAR (PTAR > 500 l/s)

Consideraciones del EM "Agenda del Agua 2030"

Inventario & Escenarios de mitigación para 2030

Estimación de factores de emisión de CH₄ de los principales sistemas de TAR en México

El Panel Intergubernamental de Cambio Climático (IPCC) desarrolló una serie de directrices metodológicas para la elaboración de inventarios nacionales de GEI, que permiten a todos los países interesados elaborar sus inventarios de emisiones de forma clara y comparable.

Estas guías son mejoradas constantemente; incluyen instrucciones y manuales de referencia.

DIRECTRICES DEL IPCC, 2006

VOLUME 5. DESECHOS

CAPITULO 6. Tratamiento de aguas residuales domésticas e industriales

De acuerdo a lo anterior, se considera de gran importancia generar factores de emisión específicos y que deberán tomar en cuenta las condiciones ambientales del país y las tecnologías de tratamiento usadas.

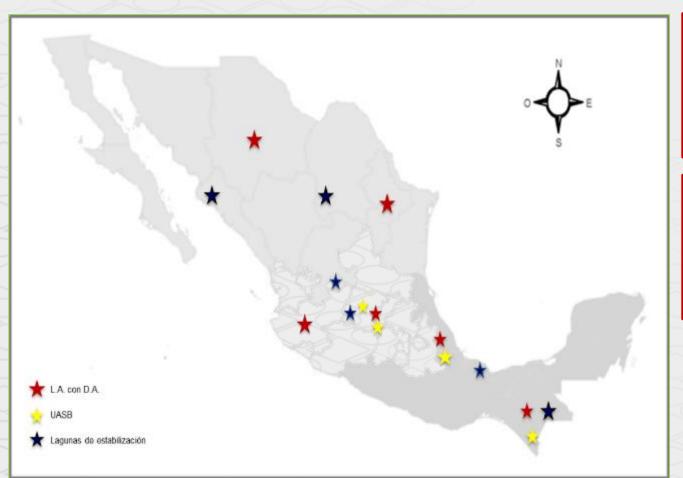
NIVEL 3

Esta información permitiría minimizar la incertidumbre de los inventarios de emisiones GEI de los TAR municipales en México y así poder contar con datos precisos que permitieran establecer adecuadas medidas y estrategias de mitigación.

Impactos en México del TAR municipales en el cambio climático

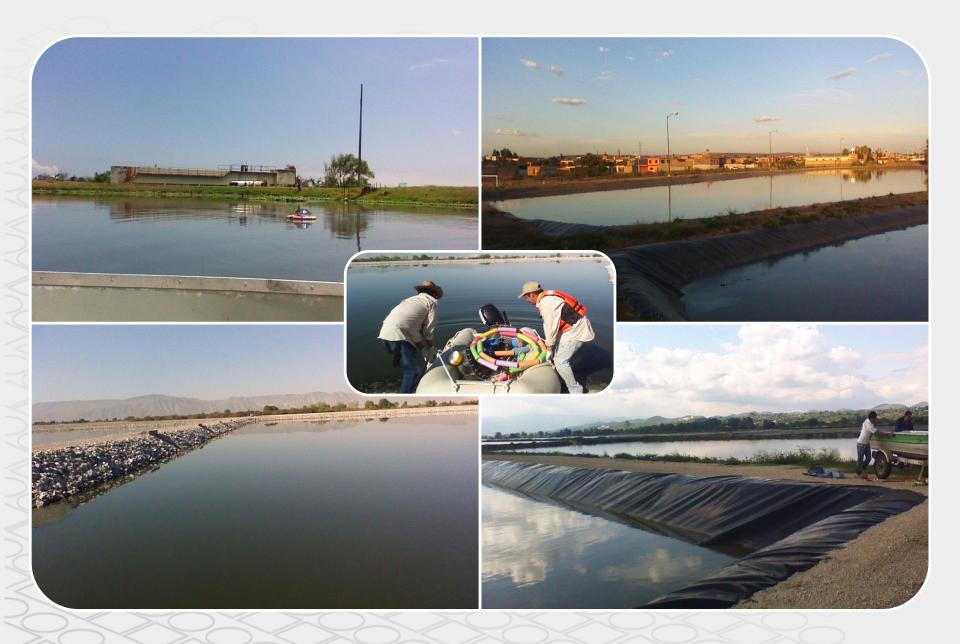
Emisiones de Metano (teóricas e *in-situ*)
Estimación de Factores de emisión

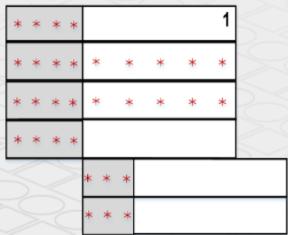
Implementación de adecuadas estrategias de mitigación.

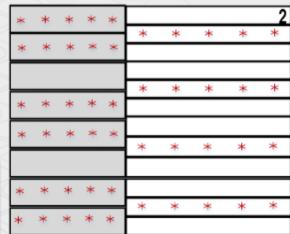

Lodos activados con digestión anaerobia

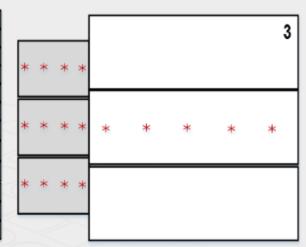
Lagunas de estabilización

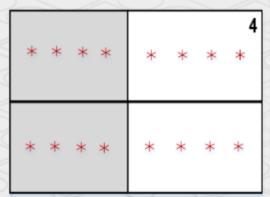
Reactor anaerobio de flujo ascendente (UASB)

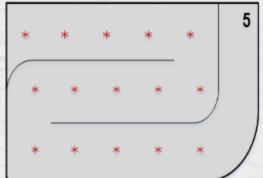





Lagunas de estabilización






Lagunas de estabilización

- 1. Torreón (TOR)
- Los Mochis (MOC)
- 3. Comitán (COM)
- 4. Coatzacoalcos (COA)
- 5. Irapuato (IRA)

- Lagunas anaerobias
- Lagunas facultativas
- * Puntos de muestreo

Paredes MG et al., 2015

Emisiones de CH₄ teóricas - Metodología IPCC

$$FE = B_o * MCF$$
 Emisiones de $CH_4 = \sum FE * TWO$

Lagunas de estabilización

Sin recuperación de metano

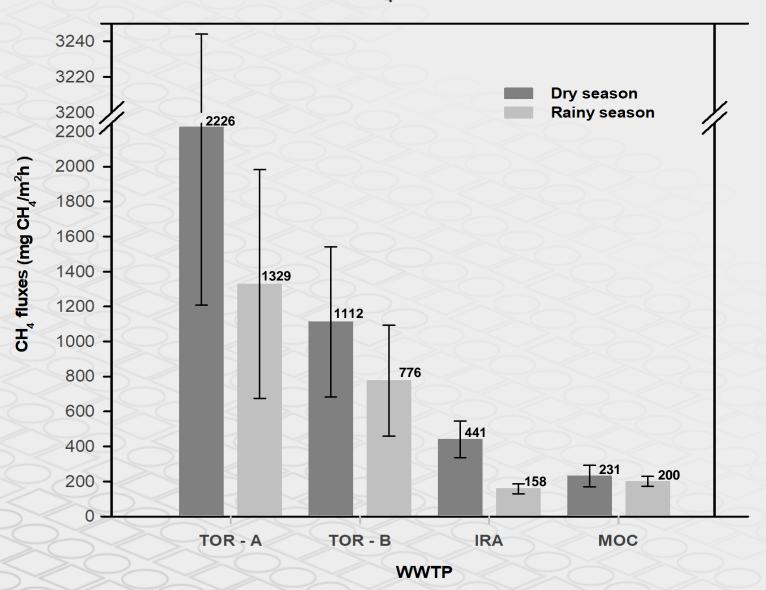
MCF

0.8 and 1.0

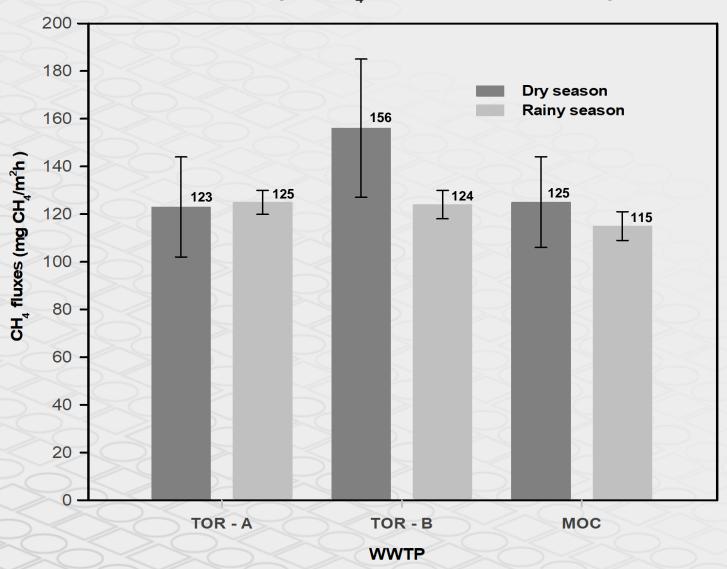
Emisiones de CH₄ en campo – Método de Flux Chamber

- 1. Cinco cámaras fueron distribuidas a lo largo de cada laguna.
- 2. Una vez colocado las cámaras estáticas en los puntos de muestreo estratégicos, el siguiente paso fue tomando mediciones a intervalos de 30 minutos durante tres horas.
- 3. Las concentraciones de gas metano se determinaron utilizando un Analizador de biogás Portátil.

Flujos de metano


	Primer mues	streo (Estiaje)	Segundo muestreo (Lluvias)		
PTAR	Lagunas anaerobias	Lagunas facultativas	Lagunas anaerobias	Lagunas facultativas	
		CH ₄ flux (m	ng CH ₄ /m ² h)		
	2226 ± 1018	123 ± 21	1329 ± 653	125 ± 5	
TOR	1112 ± 430	156 ± 29	776 ± 317	124 ± 6	
COM	907 ± 304	186 ± 27			
IRA	441 ± 104		158 ± 28		
COA	366 ± 113	123 ± 3	<u></u>		
MOC	231 ± 62	125 ± 19	200 ± 29	115 ± 6	

Flujos de metano

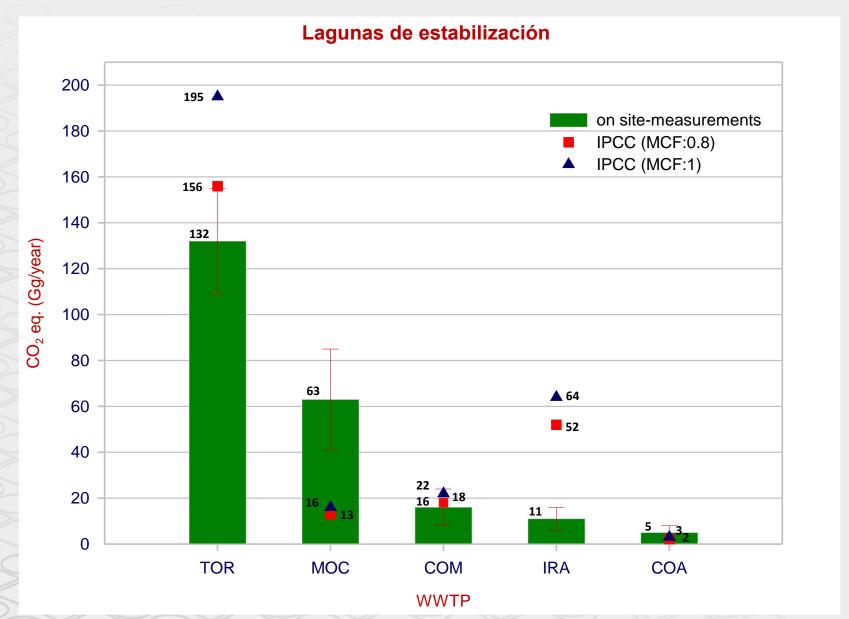

Seasonal variability of CH₄ fluxes from anaerobic ponds

Flujos de metano

Seasonal variability of CH₄ fluxes from facultative ponds

Literatura reportada

Sistema	País	Flujo tratado (L/s)	COD (mg/L)	Temperatura (°C)	CH ₄ flux (mg CH ₄ /m²h)	Referencia
LE	Mexico	160-1357	195-686	24-32	115 – 2226	Estudio actual
LE	Bolivia	317	1,336	13-14	5 - 152	Parra et al. 2010
LE	Portugal	15.5	699	20	541 – 1450	Toprak 1995
LA	England	46.3		10-20	175 - 842	Czepiel et al. 1993
LA	France	10.2	685	12-24	55 – 2035	Paing et al. 2000
LA	China	3472	200	12 -24	89 - 143	Wang et al. 2011
LA	France	Poblacion servida 13,800	589	18	358 – 2970	Picot et al. 2003


Factores de emisión de CH₄

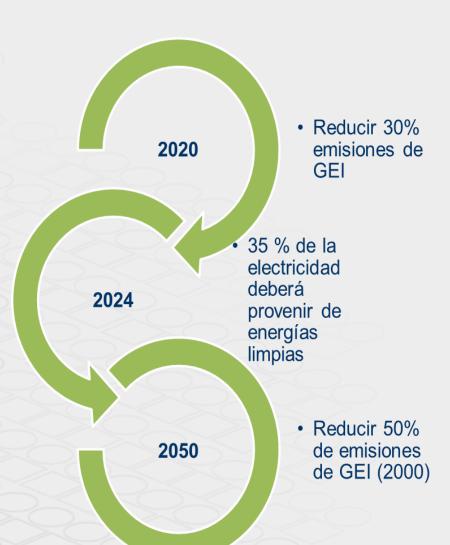
PTAR	Primer muestreo		Segundo muestreo		
	kg CH₄/kg DBO rem	kg CH₄/m³ agua tratada	kg CH₄/kg DBOrem	kg CH₄/m³ agua tratada	
MOC	2.15 ± 0.436	0.064 ± 0.015	1.94 ± 0.267	0.056 ± 0.010	
COA	1.08 ± 0.283	0.024 ± 0.006			
COM	0.60 ± 0.115	0.092 ± 0.016			
TOR	0.45 ± 0.13	0.11 ± 0.027	0.35 ± 0.122	0.073 ± 0.021	
IRA	0.15 ± 0.03	0.019 ± 0.005	0.06 ± 0.011	0.007 ± 0.001	

Emisiones de CH₄ en CO₂ eq

Control y manejo del metano en el sector de TAR

- Adaptación de las PTAR existentes de sistemas de Lodos Activados para incluir el proceso de digestión anaerobia con la captura y uso de biogás cuando sea posible (grandes PTAR, mayores a 250 L/s)
- Instalación de sistemas de captura y quema de biogás en sistemas de TAR anaerobios existentes (pequeñas áreas urbanas y rurales de países en desarrollo).
- Adoptar el uso de reactores anaerobios en regiones con clima cálido, principalmente para instalaciones de pequeña y mediana escala, asegurando un adecuado manejo del biogás (reducción de emisiones indirectas de CO2 debido a menor consumo de electricidad)
- Optimizar las instalaciones/sistemas existentes que no están siendo operados correctamente e implementar prácticas de operación y mantenimiento adecuadas, principalmente enfocadas al uso eficiente de la energía.
- Evaluación de la viabilidad ambiental, social y económica de los proyectos de desarrollo tecnológico para reducir las emisiones de GEI generadas por el tratamiento de aguas residuales, a través de un enfoque de Análisis de Ciclo de Vida.

Comentarios finales


- El tratamiento de aguas residuales municipales representa una oportunidad para reducir las emisiones de GEI de los países en desarrollo con cobertura limitada.
- La elección de las tecnologías de tratamiento es de gran importancia para lograr reducciones efectivas de emisiones de GEI en el sector del agua. Al tomar decisiones correctas, se pueden alcanzar dos objetivos: la reducción de descarga directa de las aguas residuales no tratadas y la mitigación de las emisiones de GEI del sector del agua.
- Se resalta la necesidad de investigación en el desarrollo de tecnologías de captación de metano altamente eficientes para lograr un mayor porcentaje de reducción de emisiones de GEI en el sector de TAR.
- Desarrollar tecnologías eficientes y de bajo costo para captar el metano y generar electricidad en pequeñas unidades. Estos serían elementos valiosos para la opción de sistemas anaerobios para el TAR, lo que resultaría en una menor huella de carbono en el sector del aguas residuales.
- Los factores de emisión de metano específicos para el país podrán ser empleados para el cálculo de emisiones de metano generados por el tratamiento de aguas residuales en México. Esta información permitirá minimizar la incertidumbre de los inventarios nacionales en este sector (Tier 3 del IPCC).

Estrategia de mitigación nacional

Política nacional de CC

- Ley General de CC (2012)
- Estrategia Nacional de CC (2013)
- Programa especial de CC (2014)
- Registro Nacional de Emisiones (RENE)
- Comunicaciones nacionales de CC

- Inventarios de emisiones de GEI nacionales

Proyectos de reducción de emisiones de

BENEFICIOS:

- Logro de metas voluntarias de reducción de emisiones de CyGEI
- Demostración de actividades en favor del medio ambiente por responsabilidad social
- Aumento de la competitividad empresarial
- Obtención de seguridad energética asociada con el uso eficiente de energía y utilización de energías renovables
- Incorporación a programas de reducción de residuos y emisiones de contaminantes locales provenientes de las instalaciones del sector industrial

MParedesF@iingen.unam.mx

Grupo de investigación de Análisis de Ciclo de Vida y Cambio Climático

<u>GRACIAS</u>